ESENSI DAN PROSES PEMBUKTIAN EKUIVALENSI LOGIS MENGGUNAKAN SIMBOL LINGKARAN PUTIH DAN LINGKARAN HITAM

Authors

  • Junius Karel Tampubolon Program Studi Informatika, Universitas Kristen Duta Wacana, Yogyakarta, Indonesia
  • Raden Gunawan Santosa Program Studi Informatika, Universitas Kristen Duta Wacana, Yogyakarta, Indonesia

DOI:

https://doi.org/10.37478/jupika.v8i1.5368

Abstract

The essence of the equivalence of P and Q is a condition that shows that P and Q have the same meaning based on the established reference. Achieving equivalence between P and Q involves transforming the form of P into Q while consistently obeying the established reference. The process of transforming P into Q using the symbols white circle and black circle while maintaining their equivalence is known as the equivalence step. The essence of logical equivalence steps are simplification, substitution and construction. The purpose of this study is to explore the process of the equivalence step more deeply to simplify the expression of propositions and ensure that the meaning of the symbols remains consistent and does not change the meaning of its original context after the equivalence step is carried out. The method used in this study has four stages, namely the preparation of equivalence guidelines, the development of problem-solving questions, simulation experiments, and the last is error evaluation. This study concludes that errors in the equivalence step often occur due to misunderstandings in the use of logical relationships such as "and," "or," and "if-then." Furthermore, incorrect equivalence steps can also occur due to inconsistent steps, steps that do not follow the rules of precedent, and steps that result in contradictions.

Downloads

Download data is not yet available.

Keywords:

karel@staff.ukdw.ac.id

References

Apriyani, D. C. N. (2021). Materi Prasyarat Dan Miskonsepsi Terkait Keterampilan Aljabar. In Seminar Nasional Hasil Penelitian dan Abdimas Tahun (p. 92).

Ben-Ari, M. (2012). Mathematical Logic for Computer Science. London: Springer-Verlag.

Chrismanto, A. R., Nendya, M. B., Tampubolon, J. K., Santosa, R. G., Sudarma, W. E., & Hermawan, H. (2020). Inovasi Pembelajaran Logika-Simbolik melalui Aplikasi DUTAlogic bagi Siswa Tunarungu. JP (Jurnal Pendidikan): Teori Dan Praktik, 5(1). https://doi.org/10.26740/jp.v5n1.p%p

Gereda, A. (2022). LANGUAGE LOGIC: Prinsip-Prinsip Pernalaran Berbahasa. Purwokerto: AMERTA MEDIA.

Grassmann, W. K. (1996). Logic and Discrete Mathematics, A Computer Science Perspective. New Jersey: Prentice Hall.

Gultom, G. A., Simatupang, D. A., Purba, S. G. A., Rumapea, M. S., & Sinaga, C. V. R. (2025). Resistensi Mahasiswa Dalam Mengatasi Kesulitan Belajar Struktur Aljabar di Universitas HKBP Nommensen Pematangsiantar. As-Salam: Journal Islamic Social Sciences and Humanities, 3(1), 44-54. https://ejournal.as-salam.org/index.php/assalam/article/view/86

Musa, L. (2018). Alat peraga matematika. Pare-Pare: Penerbit Aksara Timur.

Nato, S. F., Taga, G., Suryani, L., & We'u, G. (2024). STRATEGI GURU PENGGERAK DALAM MENINGKATKAN LITERASI DAN NUMERASI SISWA SEKOLAH DASAR. JUPIKA: JURNAL PENDIDIKAN MATEMATIKA, 7(2), 97-107. DOI: https://doi.org/10.37478/jupika.v7i2.4562

Nursyahida, S. (2022). Analisis Proposisi Dengan Metode Pohon Semantik. Jurnal Matematika dan Sains (JMS), 2(1), 165-174. DOI: https://doi.org/10.552273/jms.v2i1.163

Prayogo, P., & Fauzi, M. (2015). PENERAPAN LOGIKA BOOLEAN DALAM PROGRAM PERMINTAAN BARANG BERBASIS WEB. Buana Matematika: Jurnal Ilmiah Matematika dan Pendidikan Matematika, 5(1), 35-42. https://doi.org/10.36456/buanamatematika.v5i1:.273

Prihandoko, A. C. (2006). Memahami konsep matematika secara benar dan menyajikannya dengan menarik. Jakarta: Depdiknas.

Rosadi, D., & Praswidhianingsih. (2009). PEMBUKTIAN PERNYATAAN LOGIKA PROPOSISI. Jurnal Computech & Bisnis, 100-104.

Rosen, K. H. (2012). Discrete Mathematics and Its Applications. New York: The McGraw-Hill Companies, Inc.

Santosa, R. G., & Tampubolon, J. K. (2020). Pelatihan Cara Berpikir Simbolik-Matematik Di Sma Bopkri 2 Yogyakarta. International Journal of Community Service Learning, 4(1), 35-43. DOI: https://doi.org/10.23887/ijcsl.v4i1.23099

Smullyan, R. M. (2009). Logical Labyrinths. Massachusetts : A K Peters, Ltd.

Suciati, I. (2024). LOGIKA DAN HIMPUNAN MATEMATIKA: Terintegrasi Literasi Numerasi Berbasis Budaya. Gowa: CV. Ruang Tentor.

Tampubolon, J. K. (2020). Simbol Natural, Dasar Logika untuk Matematika dan Informatika. Yogyakarta: Duta Wacana University Press.

Tampubolon, J. K. (2024). Modul Pelatihan Logika Simbolik. Yogyakarta: Hak Cipta,EC00202421305.

Woe, E., Suryani, L., & Mei, M. F. (2024). IDENTIFIKASI PERMASALAHAN GURU PENGGERAK PADA PENINGKATAN LITERASI DAN NUMERASI SISWA SEKOLAH DASAR. JUPIKA: JURNAL PENDIDIKAN MATEMATIKA, 7(2), 186-194. DOI: https://doi.org/10.37478/jupika.v7i2.4561

Yohanes, R. S., & Dian, M. (2025). Strategi Mengatasi Miskonsepsi Mahasiswa dengan menggunakan Pendekatan Konflik Kognitif. Ainara Journal (Jurnal Penelitian dan PKM Bidang Ilmu Pendidikan), 6(1), 83-92. DOI: https://doi.org/10.54371/ainj.v6i1.772

Downloads

Published

2025-03-30

How to Cite

Tampubolon, J. K., & Santosa, R. G. (2025). ESENSI DAN PROSES PEMBUKTIAN EKUIVALENSI LOGIS MENGGUNAKAN SIMBOL LINGKARAN PUTIH DAN LINGKARAN HITAM . JUPIKA: JURNAL PENDIDIKAN MATEMATIKA, 8(1), 54-63. https://doi.org/10.37478/jupika.v8i1.5368