Antifungal Activity Test of Saccharomyces cerevisiae against Phytophthora palmivora Cause Cocoa Pod Rot
DOI:
https://doi.org/10.37478/agr.v17i2.4201Abstract
The fungus Phytophthora palmivora is a phytopathogen that can cause cocoa pod rot disease. This work was conducted to determine the antifungal activity of Saccharomyces cerevisiae against P. palmivora ATCC39039 and identify the antifungal compounds produced by S. cerevisiae. The antifungal activity test of S. cerevisiae against P. palmivora ATCC39039 was performed using the dual culture method. Determination of the antifungal activity of S. cerevisiae extract on the growth of P. palmivora ATCC39039 was carried out using the poisoned food technique. The results indicated that S. cerevisiae successfully provided an inhibitory effect on the growth of P. palmivora ATCC39039 fungal colonies with an inhibition percentage of 92.93%. S. cerevisiae extract was also successful inhibiting the growth of P. palmivora ATCC39039 fungal colonies with the percentage inhibition ranging from 92.36% to 97.60%. S. cerevisiae extract contains thirteen compounds that have antifungal activity, namely Ethyl alcohol, 2-Methylbutan-1-ol, Isopentyl alcohol, Benzyl Carbinol, 1,2-Ethanediol, Acetoxyethane, 4-Hydroxyphenethyl alcohol, 4,4-Dimethyloxazolo, Acetoin, 2-Bromotetradecanoic acid, Dodecane,1-chloro, Octanoic acid ethyl ester, dan Diethylhexylphthalate. The results of this work provide information that S. cerevisiae can be utilized as a biological agent to control cocoa pod rot disease.
Downloads
Keywords:
Antifungal activity, cocoa, microbe extract, Phytophthora palmivora, Saccharomyces cerevisiaeReferences
Abdel-Kareem, M. M., Rasmey, A. M., & Zohri, A. A. (2019). The action mechanism and biocontrol potentiality of novel isolates of Saccharomyces cerevisiae against the aflatoxigenic Aspergillus flavus. Letters in Applied Microbiology, 68(2), 104–111. https://doi.org/10.1111/lam.13105
Al-Jassani, M. J., Mohammad, G. J., & Hameed, I. H. (2016). Secondary Metabolites Analysis of Saccharomyces cerievisiae and Evaluation of Antibacterial Activity. International Journal of Pharmaceutical and Clinical Research, 8(5), 304–315. www.ijpcr.com
Chi, N. M., Thu, P. Q., Nam, H. B., Quang, D. Q., Phong, L. V., Van, N. D., Trang, T. T., Kien, T. T., Tam, T. T. T., & Dell, B. (2020). Management of Phytophthora palmivora disease in Citrus reticulata with chemical fungicides. Journal of General Plant Pathology, 86, 494–502. https://doi.org/10.1007/s10327-020-00953-z
Chrzanowski, G. (2020). Saccharomyces cerevisiae-an interesting producer of bioactive plant polyphenolic metabolites. International Journal of Molecular Sciences, 21(19), 1–18. https://doi.org/10.3390/ijms21197343
Fialho, M. B., de Moraes, M. H. D., Tremocoldi, A. R., & Pascholati, S. F. (2011). Potential of antimicrobial volatile organic compounds to control Sclerotinia sclerotiorum in bean seeds. Brazilian Journal of Agricultural Research, 46(2), 137–142.
Hahn, M. (2014). The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. Journal of Chemical Biology, 7, 133–141. https://doi.org/10.1007/s12154-014-0113-1
Hassaan, M. A. & Nemr, A. E. (2020). Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egyptian Journal of Aquatic Research, 46, 207–220. https://doi.org/10.1016/j.ejar.2020.08.007
Hussein, M. M. A., Abo-Elyousr, K. A. M., Hassan, M. A. H., Hashem, M., Hassan, E. A., & Alamri, S. A. M. (2018). Induction of defense mechanisms involved in disease resistance of onion blight disease caused by Botrytis allii. Egyptian Journal of Biological Pest Control, 28, 80. https://doi.org/10.1186/s41938-018-0085-5
Khalimi, K., Suputra, I. P. W., Wirya, A. S., & Innosensia, N. L. P. C. (2022). The Effectiveness of Rhizobacteria as Bioprotectants to Mitigate Fusarium Wilt Disease and as Biostimulants to Improve the Growth of Chili (Capsicum annuum). International Journal of Biosciences and Biotechnology, 10(1), 26–36. https://doi.org/10.24843/ijbb.2022.v10.i01.p04
Komalasari, I., Suryanti, & Hadisutrisno, B. (2018). Identification of the Causal Agent of Cocoa Pod Rot Disease from Various Locations. Jurnal Perlindungan Tanaman Indonesia, 22(1), 13–19. https://doi.org/10.22146/jpti.24728
Lopes, M. R., Klein, M. N., Ferraz, L. P., da Silva, A. C., & Kupper, K. C. (2015). Saccharomyces cerevisiae: A novel
and efficient biological control agent for Colletotrichum acutatum during pre-harvest. Microbiological Research, 175, 93–99. https://doi.org/10.1016/j.micres.2015.04.003
Mishko, A., & Lutsky, E. (2020). The effect of Saccharomyces cerevisiae on antioxidant system of grape leaves infected by downy mildew. BIO Web of Conferences, 25, 06006. https://doi.org/10.1051/bioconf/20202506006
Motulo, H. F. J., S-Sinaga, M., Hartana, A., Suastika, G., & Aswidinnoor, H. (2007). Karakter Morfologi dan Molekuler Isolat Phytophthora palmivora Asal Kelapa dan Kakao. Jurnal Littri, 13(3), 111–118.
Moussa, Z., El-Hersh, M. S., & El-Khateeb, A. Y. (2017). Induction of Potato Resistance Against Bacterial Wilt Disease Using Saccharomyces cerevisiae. Biotechnology, 16(2), 57–68. https://doi.org/10.3923/biotech.2017.57.68
Pohl, C. H., Kock, J. L. F., & Thibane, V. S. (2011). Antifungal free fatty acids: A Review. JOUR, 61–71. https://www.researchgate.net/publication/266463207
Qadoos, M., Kahn, M. I., Suleman, M., Khan, H., Aqeel, M., & Rafiq, M. (2016). Comparison of Poison Food Technique and Drench Method for In Vitro Control of Alternaria sp., The Cause of Leaf Spot of Bitter Gourd. Merit Research Journal of Agriculture Science and Soil Science , 4(9), 126–130.
Rumahlewang, W., Amanupunyo, H. R. D., & Tomia, B. S. (2022). Kerusakan Buah Kakao Akibat Penyakit Busuk Buah (Phytopthora palmivora Butlher). COMSERVA, 2(7), 956–962. https://doi.org/10.36418/comserva.v2i07.427
Sindhu, V. L., Gopal, K., Arunodhayam, K., Ruth, Ch., & Srinivasulu, B. (2022). Evaluation of fungicides against Phytophthora palmivora in vitro. The Pharma Innovation Journal, 11(8), 776–779. www.thepharmajournal.com
Singh, M., Khan, M. A., T., K. Y., Ahmad, J., Fahmy, U. A., Kotta, S., Alhakamy, N. A., & Ahmad, S. (2020). Effect of Nardostachys jatamansi DC. on apoptosis, inflammation and oxidative stress induced by doxorubicin in wistar rats. Plants, 9(11), 1–14. https://doi.org/10.3390/plants9111579
Sinha, M., Weyda, I., Sørensen, A., Bruno, K. S., & Ahring, B. K. (2017). Alkane biosynthesis by Aspergillus carbonarius ITEM 5010 through heterologous expression of Synechococcus elongatus acyl-ACP/CoA reductase and aldehyde deformylating oxygenase genes. AMB Express, 7(1), 1–9. https://doi.org/10.1186/s13568-016-0321-x
Downloads
Published
Issue
Section
License
Copyright (c) 2024 I Wayan Diksa Gargita, Khamdan Khalimi , Ida Bagus Gde Pranatayana
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.