MODEL PEMBELAJARA NUMBERED HEAD TOGETHER(NHT) UNTUK MATERI POKOK RELASI DAN FUNGSI PADA SISWA KELAS VIII SMPN 1 BAJAWA

Agustina Dhiu

Jurusan Pendidikan Matematika Universitas Flores, Jln. Sam Ratulangi , Ende Flores NTT Email: dhiuagustina@gmail.com

Abstract

The problem faced by students in SMPN 1 Bajawa Utara is the lack of student participation in the teaching and learning process because teachers tend to use conventional learning methods, so students do not have the opportunity to think or express opinions either individually or in groups. To overcome these problems, the teacher must choose an appropriate learning method. One of them is cooperative learning type Numbered Heads Together (NHT). Because NHT type of cooperative learning focuses more on student cooperation in small groups of 3 - 5 people and divided heterogeneously.

This type of research is experimental research with a quantitative approach. Sources of data from student learning outcomes tests are pre-test and post-test. The population was all eighth grade students of SMP Negeri 1 Bajawa Utara, samples taken were 10 students using simple random sampling technique. Data were analyzed with descriptive analysis and covariance analysis (ANAKOVA) techniques.

The preparation of the NHT model of learning tools carried out produces good learning tools because they meet the requirements of validity, reliability, and sensitivity. The results of covariance analysis obtained statistics F count = 20.29035 and F table = 4.45 with the numerator dk = 1 and the denominator d = 17, giving a significant value (F arithmetic> F table). This shows that the NHT model gives effective results.

Keywords: NHT Model; Relationship and Function

Abstrak

Permasalahan yang di hadapi oleh siswa di SMPN 1 Bajawa Utara yakni kurangnya partisipasi siswa dalam proses belajar mengajar disebabkan guru cenderung menggunakan metode pembelajaran yang masih bersifat konvensional, sehingga siswa tidak mendapat kesempatan untuk berpikir maupun mengungkapkan pendapat baik secara individu ataupun kelompok. Untuk mengatasi masalah tersebut, guru harus memilih metode pembelajaran yang sesuai. Salah satunya adalah pembelajaran kooperatif tipe Numbered Heads Together (NHT). Karena pembelajaran kooperatif tipe NHT lebih berfokus pada kerja sama siswa dalam kelompok kecil yang beranggotakan 3 - 5 orang dan dibagi secara heterogen.

Jenis penelitian ini adalah penelitian eksperimen dengan pendekatan kuantitatif. Sumber data dari tes hasil belajar siswa berupa pre-test dan post-test. Populasi adalah semua siswa kelas VIII SMP Negeri 1 Bajawa Utara, Sampel yang diambil 10 siswa dengan teknik simple random sampling. Data dianalisis dengan teknik analisis deskriptif dan analisis kovarian (ANAKOVA).

Penyusunan perangkat pembelajaran model NHT yang dilakukan menghasilkan perangkat pembelajaran yang baik karena memenuhi syarat validitas, reliabilitas, dan sensitivitas. Hasil analisis kovarian diperoleh statistik F hitung= 20.29035 dan Ftabel = 4,45 dengan dk pembilang = 1 dan dk penyebut = 17, memberikan nilai yang signifikan (F hitung> F tabel). Hal ini menunjukan bahwa model NHT memberikan hasil yang efektif.

Kata Kunci: Model NHT; Relasi dan Fungsi

PENDAHULUAN

Dalam proses pembelajaran matematika diperlukan suatu metode mengajar yang bervariasi. Artinya dalam penggunaan metode mengajar tidak harus sama untuk semua pembahasan.

Permasalahan yang di hadapi oleh siswa di SMPN 1 Bajawa Utara yakni kurangnya partisipasi siswa dalam proses belajar mengajar disebabkan guru cenderung menggunakan metode pembelajaran yang masih bersifat konvensional, sehingga siswa tidak mendapat kesempatan untuk berpikir maupun mengungkapkan pendapat baik secara individu ataupun kelompok.

Maka perlu diterapkan suatu sistem pembelajaran yang melibatkan peran siswa secara aktif dalam kegiatan belajar mengajar, guna meningkatkan hasil belajar matematika disetiap jenjang pendidikan, misalnya model pembelajaran koperatif. Menurut Slavin (Taniredja, 2012:56) pembelajaran kooperatif dapat membantu siswa dalam mendefenisikan struktur motivasi dan organisasi untuk menumbuhkan kemitraan yang bersifat kolaboratif. Adapun model pembelajaran NHT dimana lebih ditekankan pada struktur khusus yang dirancang untuk mempengaruhi pola interaksi siswa dan memiliki tujuan untuk meningkatkan penguasaan akademik., Kagen (Zubaedi, 2011) meyakini mampu melibatkan para siswa dalam menelaah bahanyang tercakup dalam suatu pelajaran dan mengecek pemahaman siswa terhadap isi pelajaran tersebut.

Oleh karena itu peneliti tertarik untuk mengkaji Efektifitas model pembelajaran NHT pada materi Relasi dan Fungsi pada siswa kelas VII SMPN 1 Bajawa Utara. Matematika merupakan ilmu yang memegang peranan penting dalam dunia pendidikan. Belajar matematika dipandang sebagai salah satu cara melatih kemampuan siswa untuk berpikir secara logis dan sistematis.

proses pembelajaran matematika di sekolah masih menggunakan pendekatan konvensional, yaitu seorang guru secara aktif menjelaskan, memberikan contoh dan latihan. Sedangkan siswa hanya mendengar, mencatat dan mengerjakan latihan yang diberikan oleh guru. Proses pembelajaan yang seperti itu kurang melibatkan siswa secara aktif sehingga siswa cepat mudah bosan. Masalah itulah yang membuat hasil belajar matematika siswa rendah. Oleh karenanya guru sebagai pendidik harus menggunaan model ataupun strategi yang melibatkan siswa secara aktif dalam proses pembelajaran.

Sebagai altenatif pembelajaran yang dapat meningkatkan hasil belajar siswa dengan menggunakan strategi pembelajaran poster session. Strategi poster session adalah suatu strategi pembelajaran aktif dalam mengungkapkan pendapat, memberikan pertanyaan dan menjwab pertanyaan. Siswa mengungkapkan pendapatnya dengan membuat rangkuman pada sebuah ketas besar yang ditempelkan di depan kelasdan mempresentasikan rangkuman tersebut. Melalui strategi poster session ini siswa diajak turut dalam semua proses pembelajaran, baik mental maupun fisik.Pembelajaran matematika di kelas seharusnya ditekankan pada keterkaitanantara konsep-konsep matematika yang telah dimiliki anak pada kehidupan sehari-hari atau pada bidang lain. (A.Mei, F Y Naja, 2020)

Ethel (2009) pada journal of mathematics and computer education menyimpulkan bahwa strategi poster session ini mendorong siswa untuk terlibat langsung dalam proses pembelajaran, respon atau antusias siswa terhadap mtematikan sangat positif serta penguasaan konsep siswa meningkat. Caldelas (2008) menyimpulkan bahwa strategi pembeajaran poster session siswa lebih tertarik dalam menerima pembelajaran yang dilaukan oleh guru.

Tujuan dalam penelitin ini adalah (1) Mengetahui bagaimana aktvitas belajar siswa kelas VIII SMPN 1 Ende Salatan materi Kubus dan Balok dengan menggunakan strategi poster session. (2) Untuk mengetahui apakah strategi poster session dapat meningkatkan hasil belajar materi Kubus dan Balok pada siswa kelas VIII SMPN 1 Ende Selatan Tahun Pelajaran 2017/2018.

Adiansar yang berjudul Peningkatan Hasil Belajar Matematika Melalui Strategi Poster Session pada siswa kelas VIII SMP Negeri 11 Pare-pare, hasil penelitiannya menunjukkan skor rata-rata hasil belajar matematika pada siklus I ke siklus II yaitu 53,6 menigkat menjadi 88,19. Meningkatnya

Agustina Dhiu

Scientifika Coloquia: Jurnal Pendidikan Matematika, Volume 2. Nomor. 2. September 2019. Hal.9-18

persentase aktivitas yang sesuai dengan proses pembelajaran pada siklus I sebesar 49,21% menjadi 65,87% pada siklus II. (Adiansar, 2009).

METODE

Metode dalam penelitian ini adalah eksperimen dengan pendekatan kuantitatif dengan rancangan penelitian yang digunakan adalah one groups design. penelitian dilaksanakan di SMPN 1 Bajawa Utara dari bulan April sampe Mei 2017. sampel dalam penelitian ini adalah 20 siswa kelas VIII. adapun prosedur dalam penelitian ini Pendefinisian, Perancangan, Validasi para ahli. instrument yang digunakan Tes Hasil Belajar. teknik pengumpulan data teknik tes . teknik Analisis Kovarian dengan pengujian kenormalan residual menggunakan uji Kolmogorov Smirnov.

HASIL DAN PEMBAHASAN

- 1) Uji coba untuk melihat validasi, reabilitas dan sensitivitas butir soal.
 - a. validitas

Hasil perhitungan validitas setiap butir tes dengan menggunakan rumus korelasi *produck moment* disajikan pada tabel 1 berikut :

Tabel 1 Validitas butir soal

Nomor soal	1	2	3	4
r_{xy}	0,74843	0,612691	0,62532	0,724967
Validitas	Tinggi	Tinggi	Tinggi	Tinggi

Berdasarkan perhitungan Tabel 1, menunjukan bahwa soal nomor 1, 2, 3 dan 4 memperoleh kriteria tinggi artinya perhitungan mencapai $0,600 \le r_{xy} \le 0,800$ maka setiap butir tes dikategorikan valid dan layak digunakan untuk analisis selanjutnya.

b. Reliabilitas

Berdasarkan perhitungan reliabilitas tes diperoleh koofisien dan dapat dilihat pada tabel 2 berikut:

Tabel 2 Reliabilitas Butir Soal THB

THB	Koefisien reliabilitas	Kriteria
	0,41873	Cukup

Berdasarkan tes hasil reliabilitas, yang terdapat pada Tabel 2 diperoleh koefisien reliabilitas tes 0,418 "cukup", sehingga layak digunakan dalam analisis selanjutnya.Jadi instrumen penelitian ini memenuhi kriteria reliabel dan dapat digunakan untuk analisis selanjutnya.

c. Sensitivitas

Hasil perhitungan sensitivitas setiapbutir soal disajikan dalam tabel 3 berikut:

Agustina Dhiu

Scientifika Coloquia: Jurnal Pendidikan Matematika, Volume 2. Nomor. 2. September 2019. Hal.9-18

Tabel 3
Sensitivitas Butir Soal

Max	25,00	25,00	25,00	25,00
Min	10,00	15,00	15,00	10,00
Jum-Skor	165,00	185,00	215,00	215,00
Skor Tot	250	250	250	250
	0,66	0,74	0,86	0,86
Sensitivitas	Peka	Peka	Peka	Peka

Berdasarkan perhitungan tabel 3, menunjukkan bahwa semua butir tes memenuhi kriteria sensitivitas peka karena hasil interprestasi mencapai \geq 0,30. Hal ini berarti semua butir tes memenuhi kriteria sensitif sehingga layak digunakan untuk analisis selanjutnya.

2) Analisis Hasil Pre-test dan post-test

Tabel 4 Hasil *Pre-test* dan *Post-test*

NO	Pre-test (X ₁)	Post-test	Perubahan (Y ₁)	Pre -test (X ₁)	Post-test	Perubahan (Y ₂)
1	50	90	40	30	90	60
2	20	70	50	30	80	50
3	30	80	50	40	100	60
4	30	70	40	20	80	60
5	40	80	50	20	80	60
6	40	90	50	30	90	60
7	30	70	40	30	80	50
8	40	90	50	40	90	50
9	20	70	50	20	80	60
10	30	80	50	20	80	60
						$\sum y_2$
Jumlah	$\sum x_1 = 330$	$\sum x_2 = 790$	$\sum y_1 = 460$	$\sum x_1 = 280$	$\sum x_2 = 850$	= 570
	$\frac{\sum x_1}{}=33$	$\frac{\sum x_2}{1} = 79$	$\frac{\sum y_1}{n} = 46$	$\frac{\sum x_1}{2} = 28$	$\frac{\sum x_2}{}=85$	$\frac{\sum y_2}{n} = 57$
Rataan	$\frac{-}{n} = 33$	$\frac{n}{n} = 79$	$\frac{n}{n} = 46$	$\frac{n}{n} = 28$	$\frac{n}{n} = 65$	$\frac{n}{n} = 57$

Tabel 5 Hasil Reduksi Variabel x dan variabel y

NO	Σ	Κ	7	Y	Tot X	Tot Y	Tot(XY)	Xi*Yi
1	50	30	40	60	80	100	8000	3800
2	20	30	50	50	50	100	5000	2500
3	30	40	50	60	70	110	7700	3900
4	30	20	40	60	50	100	5000	2400
5	40	20	40	60	60	100	6000	2800
6	40	30	50	60	70	110	7700	3800
7	30	30	40	50	60	90	5400	2700

Agustina Dhiu

Scientifika Coloquia: Jurnal Pendidikan Matematika, Volume 2. Nomor. 2. September 2019. Hal.9-18

8	40	40	50	50	80	100	8000	4000
9	20	20	50	60	40	110	4400	2200
10	30	20	50	60	50	110	5500	2700
Jumlah	330	280	460	570	610	1030	628300	311400
Rata-rata	33	28	46	57	372100	1060900		
Jumlah Kuadrat	108900	78400	211600	324900	18605	53045	31415	31140
Rata-rata kuadrat	10890	7840	21160	32490	30.5	51.5		
		187300		536500				
		18730		53650				

$$(\Sigma X_1)^2 = 108900 \qquad (\Sigma Y_1)^2 = 211600$$

$$(\Sigma X_2)^2 = 78400 \qquad (\Sigma Y_2)^2 = 324900$$

$$(\Sigma X_1)^2 + (\Sigma X_2)^2 = 187300 \qquad \frac{(\Sigma X_1)^2 + (\Sigma X_2)^2}{10} = 18730$$

$$(\Sigma Y_1)^2 + (\Sigma Y_2)^2 = 536500 \qquad \frac{(\Sigma Y_1)^2 + (\Sigma Y_2)^2}{10} = 53650$$

$$\Sigma X_1 \Sigma Y_1 + \Sigma X_2 \Sigma Y_2 = 311400 \qquad \frac{\Sigma X_1 \Sigma Y_1 + \Sigma X_2 \Sigma Y_2}{10} = 31140$$

$$(\Sigma X)^2 = 372100 \qquad (\Sigma Y)^2 = 1060900$$

$$\frac{(\Sigma X)^2}{20} = 18605 \qquad \frac{(\Sigma Y)^2}{20} = 53045 \qquad \frac{(\Sigma x^* y)^2}{20} = 31415$$

Karena adanya korelasi antara variabel X dan variabel Y, maka langkah pertama adalah memurnikan variabel Y dari variabel konkomitan (pengiring) X, atau memperoleh Y yang disesuaikan atau dikoreksi.

Tabel 6 Koreksi Variabel x dan Variabel y

N o	X ²		Y ²		XY		Total X ²	Total Y ²	Total (xy)
1	2500	900	1600	3600	2000	1800	3400	5200	36000 00
2	400	900	2500	2500	1000	1500	1300	5000	15000 00
3	900	1600	2500	3600	1500	2400	2500	6100	36000 00
4	900	400	1600	3600	1200	1200	1300	5200	14400 00
5	1600	400	1600	3600	1600	1200	2000	5200	19200 00
6	1600	900	2500	3600	2000	1800	2500	6100	36000 00
7	900	900	1600	2500	1200	1500	1800	4100	18000

Agustina Dhiu

Scientifika Coloquia: Jurnal Pendidikan Matematika, Volume 2. Nomor. 2. September 2019. Hal.9-18

									00
8	1600	1600	2500	2500	2000	2000	2200	7 000	40000
							3200	5000	00
9	400	400	2500	3600	1000	1200			12000
	400	400	2300	3000	1000	1200	800	6100	00
1	900	400	2500	3600	1500	1200			18000
0	900	400	2300	3000	1300	1200	1300	6100	00
					\sum_{α}	\sum_{α}			
	$\nabla a = 1$	$\sum_{(u,v)^2}$	∇ ()2	∇ (1. 2)	$\sum (x_1$	$\sum (x_2$	$\sum_{(\cdot,\cdot,2)}$	∇ (1.2)	∇ ()
	$\sum (x_1)^2$	$\sum (x_1)^2$	$\sum (y_1)^2$	$\sum (y_2^2)$	(x, y_1)	$\times y_2$)	$\sum (x^2)$	$\sum (y^2)$	$\sum (xy)$
	= 1170	= 8400	= 21400	= 32700		= 15800	= 20100	= 54100	= 3080

Jumlah Total

$$T_{XX} = \Sigma X_i^2 - \frac{(\Sigma X)^2}{n} = 1495$$

$$T_{YY} = \Sigma Y_i^2 - \frac{(\Sigma Y)^2}{n} = 1055$$

$$T_{XY} = \Sigma X_i Y_i - \frac{\Sigma (X)(Y)}{n} = -615$$

$$(T_{XY})^2 = 378225$$

$$\frac{(T_{XY})^2}{T_{XX}} = 252.9933$$

Perlakuan

$$\mathbf{P}_{XX} = \frac{\Sigma\{(x_1)^2 + (x_2)^2\}}{10} - \frac{(\Sigma x_i)^2}{20} = 125$$

$$\mathbf{P}_{YY} = \frac{\Sigma\{(y_1)^2 + (y_2)^2\}}{10} - \frac{(\Sigma y_i)^2}{20} = 605$$

$$\mathbf{P}_{XY} = \frac{\Sigma\{(x_1)(y_1) + (x_2)(y_2)\}}{10} - \frac{(\Sigma x_i)(\Sigma y_i)}{20} = -275$$

Kekeliruan (Dalam Kelompok)

$$E_{XX} = T_{XX} - P_{XX} = 1370$$

$$E_{YY} = T_{YY} - P_{YY} = 450$$

$$E_{XY} = T_{XY} - P_{XY} = -340$$

$$E_{XY}^{2} = 115600$$

$$\frac{E_{XY}^{2}}{E_{XY}} = 84.37956$$

Koreksi atau penyesuaian karena adanya regresi Y atas X terhadap jumlah kuadrat variabel Y dapat dihitung dengan:

Agustina Dhiu

Scientifika Coloquia: Jurnal Pendidikan Matematika, Volume 2. Nomor. 2. September 2019. Hal.9-18

Jumlah Total

$$J_E^1 = JK \ (Y \text{ dikoreksi}) = T_{YY} - \frac{(T_{XY})^2}{T_{XX}} = 802.0067$$

Dalam Perlakuan Kelompok:

$$J_E^1 = JK \ (Y \text{ dikoreksi}) = E_{YY} - \frac{(E_{XY})^2}{E_{YY}} = 365.620$$

Antar Kelompok

$$J_E^1 = JK(Y dikoreksi) = 436.386$$

Dari hasil perhitungan ini selanjutnya disajikan dalam tabel ANAKOVA berikut:

Tabel 7 Daftar Anakova Metode Pembelajaran

Sumber Variasi	Dk	JK dan Produk Silang		duk	Di	csi		
		Y	XY	X	Y	dk	KT	F
Antar Kelompok	1	605	-275	125				
Dalam Kelompok	18	450	-340	1370	365.6204	17	21.50708	
Jumlah	19	1055	-615	1495	802.0067	18		
Antar Kelompok					436.3863	1	436.3863	20.29035

Keterangan:

dk : Derajat kebebasan JK : Jumlah kuadrat.

KT : Kuadrat tengah = Y/dk (dikoreksi).

F : F statistik diperoleh dari KT antar kelompok dibagi KT dalam kelompok.

Dari tabel ANAKOVA di atas, untuk menguji efek pembelajaran dalam kelompok eksperimen terhadap respon Y setelah dimurnikan dari variabel konkomitan X, diperoleh statistik F = 20.29035dengan dk pembilang = 1 dan dk penyebut 17, memberikan nilai yang signifikan (F = 4,45).

REGRESI DALAM PERLAKUAN

Dengan memperhatikan model ANAKOVA yaitu:

$$Y_{ij} = \mu + \beta(X_{ij} - \overline{X}) + \tau_i + \varepsilon_{ij} \qquad i = 1, 2, ..., k$$
$$j = 1, 2, ..., n_k$$

Nilai parameter yang diduga dengan metode kuadrat terkecil:

1. Koefisien regresi
$$\beta$$
 ditaksir oleh: $b = \frac{E_{XY}}{E_{XX}}$

$$b = -0.25$$

2.
$$\mu$$
 ditaksir oleh: $\frac{J_{Y..}}{N}$

$$\mu = \frac{\sum y}{n} = 51.5$$

Agustina Dhiu

Scientifika Coloquia: Jurnal Pendidikan Matematika, Volume 2. Nomor. 2. September 2019. Hal.9-18

3.
$$\tau_i$$
 ditaksir oleh: $\frac{J_{Yi.}}{n_i} - b \left(\frac{J_{Xi.}}{n_i} - \frac{J_{X..}}{N} \right)$

Perlakuan A (τ_{A}) = 46.62044

Perlakuan B (τ_R) = 56.37956

Tabel 8 Nilai Rata-Rata Koreksi Kelompok

		_
Perlakuan	Rata-rata	Rata-rata tidak
Kelompok	dikoreksi	dikoreksi
A	46.62	46
В	56.38	57

Keterangan:

Perlakuan : Perlakuan pembelajaran kooperatif tipe NHT pada kelas ekperimen

yang dibagi menjadi kelompok A dan B

Rt dikoreksi : Rata-rata variabel Y yang dikoreksi sesuai nilaiA danB

Rt tdk dikoreksi : Rata-rata varibael Y yang tidak dikoreksi sesuai nilai rata-rata

perubahan

Dari tabel tersebut di atas tampak bahwa perbedaan rata-rata yang dikoreksi atau disesuaikan harga-harganya lebih kecil perbedaannya dari yang satu dengan yang lainnya jika dibandingkan dengan rata-rata yang tidak dikoreksi.

Model yang diperoleh dalam eksperimen adalah:

$$Y_A = 51, 50 - 0, 25x + 46, 62$$

 $Y_B = 51, 50 - 0, 25x + 56, 38$

4. Pengujian Hipotesis

1. Pemeriksaan Residual

Setelah diperoleh nilai estimasi parameter, maka langkah selanjutnya adalah melakukan uji normalitas residual. Pengujian kenormalan residual menggunakan uji *Kolmogorov-Smirnov* dengan hipotesis sebagai berikut:

 H_0 : Residual berdistribusi normal

 H_1 : Residual tidak berdistribusi normal

Regression Analysis: Mutlak Residual versus y

The regression equation is $Mutres = 2.80 + 0.0556 \times Analysis of Variance$

16

Agustina Dhiu

Scientifika Coloquia: Jurnal Pendidikan Matematika, Volume 2. Nomor. 2. September 2019. Hal.9-18

Tabel 9
Tabel Analisis Varian (Anova)

			,	<u> </u>				
Source	DF	SS	MS	F	P			
Regression	1	5.50	5.50	0.34	0.567			
Residual Error	18	291.59	16.20					
Total 19 297.09								
Durb	Durbin-Watson statistic = 2.22006							

a. Uji identik dengan hipotesis sebagai berikut.

$$H_0: \sigma_1^2 = \sigma_2^2 = \dots = \sigma_n^2 = \sigma^2$$

$$H_1$$
: minimal ada satu $\sigma_i^2 \neq \sigma^2$, $i = 1, 2, ..., n$

Pada tingkat signifikansi 5%. Nilai F-hitung = 0.34 < F-tabel = 4.45 atau dapat dilihat nilai P-value $0.567 > \alpha = 0.05$ yang menyimpulkan bahwa dalam kasus ini varians telah homogen.

b. Uji independen

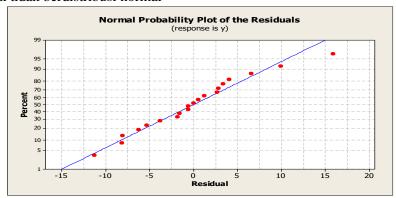
Uji independen dapat dilakukan dengan hipotesis sebagai berikut.

 $H_0: \rho_i = 0$ atau residual tidak berkorelasi

$$H_1: \rho_i \neq 0$$
 residual berkorelasi

$$\alpha = 0.05$$

Durbin-Watson statistic = 2.22062


Pada tingkat signifikansi 5%. Nilai P-*value* = $0.567 > \alpha = 0,05$ yang menyimpulkan bahwa dalam kasus ini residual tidak berkorelasi atau gagal tolak H₀. Dengan kriteria Durbin Watson tes $d = 2.22062 \square$ 2 tidak ada korelasi antar residual.

c. Uji normalitas

Pengujian normalitas dapat dilakukan dengan hipotesis sebagai berikut.

H₀: Residual berdistribusi normal

H₁: Residual tidak berdistribusi normal

Gambar 1

Normal Probabilitas Residual

Plot normalitas residual menunjukkan tidak ada penyimpangan terhadap distribusi normal. Hal ini diperkuat dengan menggunakan uji Kolmogorov-Smirnov yang memberikan P-value = 0,567 > 0,05 sehingga gagal tolak H_0 atau residual berdistribusi normal.

Agustina Dhiu

Scientifika Coloquia: Jurnal Pendidikan Matematika, Volume 2. Nomor. 2. September 2019. Hal.9-18

KESIMPULAN

Pembelajaran dengan menggunakan pembelajaran kooperatif tipe NHT dapat meningkatkan hasil belajar matematika siswa untuk materi relasi dan fungsi. Hal ini dapat dilihat dalam tabel anakova $\llbracket F \rrbracket$ _hitung = 20.29035 dan F_tabel=4,45 dengan dk pembilang 1 dandkpenyebut 17, dengan memberikan nilai yang signifikan ($\llbracket F \rrbracket$ _hitung>F_tabel). Hal ini menunjukan bahwa pembelajaran kooperatif tipe NHT memberikan hasil yang efektif.

DAFTAR PUSTAKA

- A.Mei, F Y Naja, S. S. (2020). Pembelajaran Matematika Realistik Berbasis Kontekstual Untuk Materi Geometri Pada Siswa Kelas VII SMPN 2 Ende Selatan. 5(1), 19–28.
- Adiansar. (2015). Peningkatan Hasil Belajar Matematika Melalui Strategi Poster Session pada Peserta Didik Kela VIII SMP Negeri 11 ParePare. Universitas Muhammadiyah: Makasar.
- Arikunto, Suharsimi. (2006). Prosedur Penelitian Suatu Pendekatan Praktek. Jakarta: PT Renika Cipta.
- Caldelas, I.R.Montufar-Chaveznava and M.Ali Yousuf. 2008. *Poster Sessions as a Strategy to Motivate Engineering Learning*. GIRATEGroup, Engineering Department, ITESM, Journal of Engineering Vol 5.
- Ethel, dkk. (2009). "The Poster Session: A Tool For Education, Assessment and Recruitment", Journal of Mathematics and Computer Education Vol. 43 No.2.
- Emzir. (2010). Metodologi Penelitian Kualitatif. Jakarta: Raja Grafindo.
- Endang. (2012). Penerapan Strategi Poster Session untuk Meningkatkan Pemahaman Konsep dan Komunikasi Siswa dalam Pembelajaran Matematika (PTK Pembelajaran Matematika di Kelas VIII C SMP Negeri 1 Karanggande pada Materi Kubus dan Balok). Universitas Muhammadiyah Surakarta.
- Dalyono, M. (2009). Psikologi Pendidikan. Jakarta: Rineka Cipta.
- Djamarah, S.B. (2011). Psikologi Belajar. Jakarta: Rineka Cipta.
- Ningrum, Epon. (2014). Penelitian Tindakan Kelas Panduan Praktis dan Contoh. Yogyakarta: Ombak.
- Nuharini, Dewi. (2008). *Matematika Konsep dan Aplikasinya*. Jakarta: Pusat Perbukuan Departemen Pendidikan Nasional.
- Nuniek. (2008). *Mudah Belajar Matematika. Jakarta: Pusat Perbukuan Departemen Pendidikan Nasional.Kemendikbud.* (2013). Kerangka Dasar Kurikulum 2013. Kementerian Pendidikan dan Kebudayaan Direktorat Jenderal Pendidikan Dasar .