PERANCANGAN VOLTAGE-CONTROLLED OSCILATOR (VCO) BERBASIS IC XR-2206 UNTUK SISTEM ELEKTRICAL IMPEDANCE TOMOGRAPHY (EIT)
DOI:
https://doi.org/10.37478/optika.v8i1.4175Abstract
Tujuan penelitian ini adalah merancang Voltage-Controlled Oscillator (VCO) untuk sistem Electrical impedance Tomography (EIT) yang memanfaatkan IC XR-2206 sebagai pembangkit sinyal eksitasi. Pengujian sinyal keluaran dari rangkaian VCO dilakukan dengan menggunakan osiloskop. Hal ini dilakukan untuk melihat kualitas sinyal dan frekuensi yang dihasilkan oleh rangkaian VCO. Hasil perancangan dan pengujian rangkaian VCO diperoleh hasil bahwa frekuensi sinyal yang dapat dibangkitkan berada pada rentang 3.00 KHz hingga 88.49 KHz. Namun, sebagaimana yang teramati dalam pengujian, rangkaian VCO yang dirancang menunjukkan adanya tegangan DC offset. Oleh karena itu, untuk mengatasi permasalahan ini, diperlukan penambahan sebuah rangkaian filter aktif yang terhubung pada keluaran VCO. Berdasarkan pengujian dan analisis yang telah dilakukan terhadap rangkaian VCO hasil perancangan, didapatkan hasil bahwa sistem yang telah dirancang memiliki kapabilitas sebagai pembangkit sinyal eksitasi pada sistem EIT dengan nilai frekuensi eksitasi 3.00 KHz - 88.49 KHz.
Downloads
Keywords:
Voltage-Controlled Oscillator (VCO), Filter, Electrical impedance Tomography (EIT) , DC Offset, FrekuensiReferences
Bera, T. K. (2018). Applications of Electrical Impedance Tomography (EIT): A Short Review. IOP Conference Series: Materials Science and Engineering, 331, 012004. https://doi.org/10.1088/1757-899X/331/1/012004
Chitturi, V., & Farrukh, N. (2016). Development Of An Agilent Voltage Source For Electrical Impedance Tomography Applications. 11(5).
Chitturi V., Farrukh N., Thiruchelvam V., and Fei T.K. (2014). A Low Cost Electrical Impedance Tomography (EIT) for Pulmonary Disease. SDIWC. ISBN:978-0-9891305-4-7.
Gallardo N. V., García H. M. (2022). Electrical Impedance Tomography for Hand Gesture Recognition for HMI Interaction Applications. Journal of Low Power Electronics and Applications. https://doi.org/doi.org/10.3390/ jlpea12030041
Graham B.M., and Adler A. (2007). Electrode Placement Configurations for 3D EIT. IoP. Physiological measurement. 28 No 7.
Hamilton, S. J., & Hauptmann, A. (2018). Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks. IEEE Transactions on Medical Imaging, 37(10), 2367–2377. https://doi.org/10.1109/TMI.2018.2828303
Khalighi M., Vahdat B.V., Mortazavi M., and Mikaeili M. (2014). Design and Implementation of Precise Hardware for Electrical Impedance Tomography (EIT). IJST.Transactions of Electrical Engineering. Vol. 38. No. E1, pp 1–20.
Moro L. C., Porto R. W. (2015). Single Fequency Electrical Impedance Tomography System with Offline Reconstruction Algorithm. IEEE 6th Latin American Symposium on Circuits & Systems (LASCAS 2015).https://doi.org/10.1109/LASCAS.2015.7250469
Nascimento, M. S., Alcala, G. C., Guzman, A. I. A., Corrêa, L. C., Baggio, D. M., Rossi, F. S., Fascina, L. P., Amato, M. B. P., & do Prado, C. (2021). Electrical impedance tomography in pediatric patients with COVID-19, the first reports. BMC Pulmonary Medicine, 21(1), 357. https://doi.org/10.1186/s12890-021-01716-y
Pasha M., Kupis S., Ahmad S., Khan T. (2021). A Krylov Subspace Type Method For Electrical Impedance Tomography. ESAIM: Mathematical Modelling and Numerical Analysis. https://doi.org/doi.org/10.1051/m2an/2021057
Rymarczyk T., Szulc K. (2017). Reconstruction of conductivity distribution in electrical impedance tomography by topological derivative. 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF).1–2.
Sapuan I., Ain K., Suryanto A. (2017). Dual frequency electrical impedance tomography to obtain functional image. IOP Conf. Series: Journal of Physics:International Conference on Physical Instrumentation and Advanced Materials. https://doi.org/10.1088/1742-6596/853/1/012002
Sarode V., Chimurkar P.M., and Cheeran A.N. (2012). Electrical Impedance Tomography using EIDORS in a Closed Phantom. International Journal of Computer Applications.48– No.19.
Sebu, C. (2017). Electrical Impedance Mammography: The key to low-cost, portable and non-invasive breast cancer screening. Xjenza Online, 2, 154–157. https://doi.org/10.7423/XJENZA.2017.2.09
Shinde S. M., Kamat D. K. (2013). A general view of Electrical impedance tomography in varieties ofapplications. International Journal of Engineering Research & Technology (IJERT). Vol. 2 Issue 9.
Singh G., Anand S., Lall B., Srivastava A., and Singh V. (2012). Development of a Microcontroller based Electrical Impedance Tomography System. Long Island Systems, Applications and Technology.IEEE..
Teschner E., Imhoff M., Leonhardt S. (2013). Electrical Impedance Tomography:The realisation of regional ventilation monitoring 2nd edition. Drager.Technology for life.
Trigo F.C., Lima G.Z., and Amato M.B.P. (2004). Electrical Impedance Tomography Using the Extended Kalman Filter. IEEE Transactions on Biomedical Engineering. Vol. 51, no. 1.
Umbu, A. B. S. (2022). Rancangan Bangun Sistem Pengaturan Alur Injeksi Arus dan Pengukuran Tegangan Untuk Sistem Elektrical Impedance Tomography. OPTIKA:Jurnal Pendidikan Fisika, 6(2), 111-118. https://doi.org/10.37478/optika.v6i2.2068
Wu J., Chen X., Ding Z. (2013). Digital Biomedical Electrical Impedance Tomography Used on FPGA. Journal of Biosciences and Medicines.1, 14–18
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ari Bangkit Sanjaya Umbu
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Jurnal Lesensi