PERANCANGAN VOLTAGE-CONTROLLED OSCILATOR (VCO) BERBASIS IC XR-2206 UNTUK SISTEM ELEKTRICAL IMPEDANCE TOMOGRAPHY (EIT)

Authors

  • Ari Bangkit Sanjaya Umbu Universitas Nusa Cendana

DOI:

https://doi.org/10.37478/optika.v8i1.4175

Abstract

Tujuan penelitian ini adalah merancang Voltage-Controlled Oscillator (VCO) untuk sistem Electrical impedance Tomography (EIT) yang memanfaatkan IC XR-2206 sebagai pembangkit sinyal eksitasi. Pengujian sinyal keluaran dari rangkaian VCO dilakukan dengan menggunakan osiloskop. Hal ini dilakukan untuk melihat kualitas sinyal dan frekuensi yang dihasilkan oleh rangkaian VCO. Hasil perancangan dan pengujian rangkaian VCO diperoleh hasil bahwa frekuensi sinyal yang dapat dibangkitkan berada pada rentang 3.00 KHz hingga 88.49 KHz. Namun, sebagaimana yang teramati dalam pengujian, rangkaian VCO yang dirancang menunjukkan adanya tegangan DC offset. Oleh karena itu, untuk mengatasi permasalahan ini, diperlukan penambahan sebuah rangkaian filter aktif yang terhubung pada keluaran VCO. Berdasarkan pengujian dan analisis yang telah dilakukan terhadap rangkaian VCO hasil perancangan, didapatkan hasil bahwa sistem yang telah dirancang memiliki kapabilitas sebagai pembangkit sinyal eksitasi pada sistem EIT dengan nilai frekuensi eksitasi 3.00 KHz - 88.49 KHz.

Downloads

Download data is not yet available.

Keywords:

Voltage-Controlled Oscillator (VCO), Filter, Electrical impedance Tomography (EIT) , DC Offset, Frekuensi

References

Bera, T. K. (2018). Applications of Electrical Impedance Tomography (EIT): A Short Review. IOP Conference Series: Materials Science and Engineering, 331, 012004. https://doi.org/10.1088/1757-899X/331/1/012004

Chitturi, V., & Farrukh, N. (2016). Development Of An Agilent Voltage Source For Electrical Impedance Tomography Applications. 11(5).

Chitturi V., Farrukh N., Thiruchelvam V., and Fei T.K. (2014). A Low Cost Electrical Impedance Tomography (EIT) for Pulmonary Disease. SDIWC. ISBN:978-0-9891305-4-7.

Gallardo N. V., García H. M. (2022). Electrical Impedance Tomography for Hand Gesture Recognition for HMI Interaction Applications. Journal of Low Power Electronics and Applications. https://doi.org/doi.org/10.3390/ jlpea12030041

Graham B.M., and Adler A. (2007). Electrode Placement Configurations for 3D EIT. IoP. Physiological measurement. 28 No 7.

Hamilton, S. J., & Hauptmann, A. (2018). Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks. IEEE Transactions on Medical Imaging, 37(10), 2367–2377. https://doi.org/10.1109/TMI.2018.2828303

Khalighi M., Vahdat B.V., Mortazavi M., and Mikaeili M. (2014). Design and Implementation of Precise Hardware for Electrical Impedance Tomography (EIT). IJST.Transactions of Electrical Engineering. Vol. 38. No. E1, pp 1–20.

Moro L. C., Porto R. W. (2015). Single Fequency Electrical Impedance Tomography System with Offline Reconstruction Algorithm. IEEE 6th Latin American Symposium on Circuits & Systems (LASCAS 2015).https://doi.org/10.1109/LASCAS.2015.7250469

Nascimento, M. S., Alcala, G. C., Guzman, A. I. A., Corrêa, L. C., Baggio, D. M., Rossi, F. S., Fascina, L. P., Amato, M. B. P., & do Prado, C. (2021). Electrical impedance tomography in pediatric patients with COVID-19, the first reports. BMC Pulmonary Medicine, 21(1), 357. https://doi.org/10.1186/s12890-021-01716-y

Pasha M., Kupis S., Ahmad S., Khan T. (2021). A Krylov Subspace Type Method For Electrical Impedance Tomography. ESAIM: Mathematical Modelling and Numerical Analysis. https://doi.org/doi.org/10.1051/m2an/2021057

Rymarczyk T., Szulc K. (2017). Reconstruction of conductivity distribution in electrical impedance tomography by topological derivative. 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF).1–2.

Sapuan I., Ain K., Suryanto A. (2017). Dual frequency electrical impedance tomography to obtain functional image. IOP Conf. Series: Journal of Physics:International Conference on Physical Instrumentation and Advanced Materials. https://doi.org/10.1088/1742-6596/853/1/012002

Sarode V., Chimurkar P.M., and Cheeran A.N. (2012). Electrical Impedance Tomography using EIDORS in a Closed Phantom. International Journal of Computer Applications.48– No.19.

Sebu, C. (2017). Electrical Impedance Mammography: The key to low-cost, portable and non-invasive breast cancer screening. Xjenza Online, 2, 154–157. https://doi.org/10.7423/XJENZA.2017.2.09

Shinde S. M., Kamat D. K. (2013). A general view of Electrical impedance tomography in varieties ofapplications. International Journal of Engineering Research & Technology (IJERT). Vol. 2 Issue 9.

Singh G., Anand S., Lall B., Srivastava A., and Singh V. (2012). Development of a Microcontroller based Electrical Impedance Tomography System. Long Island Systems, Applications and Technology.IEEE..

Teschner E., Imhoff M., Leonhardt S. (2013). Electrical Impedance Tomography:The realisation of regional ventilation monitoring 2nd edition. Drager.Technology for life.

Trigo F.C., Lima G.Z., and Amato M.B.P. (2004). Electrical Impedance Tomography Using the Extended Kalman Filter. IEEE Transactions on Biomedical Engineering. Vol. 51, no. 1.

Umbu, A. B. S. (2022). Rancangan Bangun Sistem Pengaturan Alur Injeksi Arus dan Pengukuran Tegangan Untuk Sistem Elektrical Impedance Tomography. OPTIKA:Jurnal Pendidikan Fisika, 6(2), 111-118. https://doi.org/10.37478/optika.v6i2.2068

Wu J., Chen X., Ding Z. (2013). Digital Biomedical Electrical Impedance Tomography Used on FPGA. Journal of Biosciences and Medicines.1, 14–18

Downloads

Published

2024-06-26

How to Cite

Umbu, A. B. S. (2024). PERANCANGAN VOLTAGE-CONTROLLED OSCILATOR (VCO) BERBASIS IC XR-2206 UNTUK SISTEM ELEKTRICAL IMPEDANCE TOMOGRAPHY (EIT) . OPTIKA: Jurnal Pendidikan Fisika, 8(1), 187-194. https://doi.org/10.37478/optika.v8i1.4175