Cell Wall Lytic Enzymes And Their Role In Bacteriophages Infection
DOI:
https://doi.org/10.37478/agr.v4i1.466Abstract
Use of chemical pesticides has been shown to have many negative side effects, such as insecticide resistance and resurgence, an outbreak of secondary pests and diseases, the disappearance of parasitoid and predator species as well as residual effects on food crops and on the environment. Over the past 60 years, both the number of agricultural toxins in the environment and incidence rates of toxin-related diseases has increased dramatically. The most effective way to combat this problem is through the use of natural predators. One of the best examples of this is the use of host-specific bacteriophages to control bacterial diseases. The mechanism of infection is a very interesting one. To break through the bacterial cell wall the bacteriophages must produce a range of lytic enzymes. This review will examine and discuss studies of these site-specific cell wall lytic enzymes and their roles in the infection of bacteriophages.
Downloads
Keywords:
Cell wall lytic enzymes, biological control, bacteriophagesReferences
Blackman S.A., Smith T.J. and Foster S.J. 1998. The role of autolysin during vegetative growth of Bacillus subtilis 168. Microbiology 144: 73-82.
Cohen D.N., Sham Y.Y., Haugstad G.D., Xiang Ye, Rossmann M.G., Anderson D.L., and Popham D.L. 2009. Shared catalysis in virus entry and bacterial cell wall depolymerization. J. Mol. Biol. 387: 607-618.
Djuniadi D. 2003. Role of Industry on Integrated pest management on sustainable agriculture. Indonesian Association of Entomology Congress and Entomology Symposium VI 2003. Cipayung. 17-26. (In Indonesian Language).
Erickson, B. E. 2009. Next-generation risk assessment: EPA’s plan to adopt in vitro methods for toxicity testing gets mixed reviews from stakeholders. Chemical & Engineering News, 87: 30-33.
Foster S.J. 1992. Analysis of autolysins of Bacillus subtilis 168 during vegetative growth and differentiation by using renaturing polyacrylamide gel electrophoresis. J. Bacteriol. 174: 468-470.
Francius G., Domenech O., Mingeot-Leclercq M.P., and Dufrêne Y.F. 2008. Direct observation of Staphylococcus aureus cell wall digestion by lysostaphin. J. Bacteriol. 190(24): 7904–7909.
Kenny J.G., McGrath S., Fitzgerald G.F., and van Sinderen D. 2004. Bacteriophage tuc2009 encodes a tail-associated cell wall-degrading activity. J. Bacteriol. 186: 3480-3491.
Kumar J.K. 2008. Lysostaphin: an antistaphylococcal agent Appl. Microbiol. Biotechnol. 80: 555-561.
Kunst F., Ogasawara N., Moszer I., Albertini A.M., Alloni G., Azevedo V., Bertero M.G., Bessieres P., Bolotin A., Borchert S., Borriss R., Boursier L., Brans A., Braun M., Brignell S.C., Bron S., Brouillet S., Bruschi C.V., Caldwell B., Capuano V., Carter N.M., Choi S.-K., Codani J.-J., Connerton I.F., Cummings N.J., Daniel R.A., Denizot F., Devine K.M., Duesterhoeft A., Ehrlich S.D., Emmerson P.T., Entian K.-D., Errington J., Fabret C., Ferrari E., Foulger D., Fritz C., Fujita M., Fujita Y., Fuma S., Galizzi A., Galleron N., Ghim S.-Y., Glaser P., Goffeau A., Golightly E.J., Grandi G., Guiseppi G., Guy B.J., Haga K., Haiech J., Harwood C.R., Henaut A., Hilbert H., Holsappel S., Hosono S., Hullo M.-F., Itaya M., Jones L.-M., Joris B., Karamata D., Kasahara Y., Klaerr-Blanchard M., Klein C., Kobayashi Y., Koetter P., Koningstein G., Krogh S., Kumano M., Kurita K., Lapidus A., Lardinois S., Lauber J., Lazarevic V., Lee S.-M., Levine A., Liu H., Masuda S., Mauel C., Medigue C., Medina N., Mellado R.P., Mizuno M., Moestl D., Nakai S., Noback M., Noone D., O'Reilly M., Ogawa K., Ogiwara A., Oudega B., Park S.-H., Parro V., Pohl T.M., Portetelle D., Porwollik S., Prescott A.M., Presecan E., Pujic P., Purnelle B., Rapoport G., Rey M., Reynolds S., Rieger M., Rivolta C., Rocha E., Roche B., Rose M., Sadaie Y., Sato T., Scanlan E., Schleich S., Schroeter R., Scoffone F., Sekiguchi J., Sekowska A., Seror S.J., Serror P., Shin B.-S., Soldo B., Sorokin A., Tacconi E., Takagi T., Takahashi H., Takemaru K., Takeuchi M., Tamakoshi A., Tanaka T., Terpstra P., Tognoni A., Tosato V., Uchiyama S., Vandenbol M., Vannier F., Vassarotti A., Viari A., Wambutt R., Wedler E., Wedler H., Weitzenegger T., Winters P., Wipat A., Yamamoto H., Yamane K., Yasumoto K., Yata K., Yoshida K., Yoshikawa H.-F., Zumstein E., Yoshikawa H., Danchin A. 1997.The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390, 249-256.
Lacey L.A., Frutos R., Kaya H.K., and Vai P. 2001. Insect pathogens as biological control agents: do they have a future? Biological Control 21, 230–248.
Loeffler J.M., Nelson D, Fischetti V.A. 2001. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294: 2170-2172.
Loessner M.J. 2005. Bacteriophage endolysins-current state of research and application. Current opinion in microbiology 8, 480-487.
Moak M. and Molineux I.J. 2000. Role of the Gp16 lytic transglycosylase motif inbacteriophage T7 virions at the initiation of infection. Molecular Microbiology 37(2): 345-355.
Oates L. and Cohen M. 2009. Human consumption of agricultural toxicants from organic and conventional food. Journal of Organic Systems 4 (1): 48-57.
Piuri M., and Hatfull G.F. 2006. A peptidoglycan hydrolase motif within the mycobacteriophage TM4 tape measure protein promotes efficient infection of stationary phase cells. Mol. Microbiol. 62: 1569-1585.
Regamey A., and Karamata D. 1998. The N-acetylmuramoyl-L-alanine amidase encoded by the Bacillus subtilis 168 prophage SPp. Microbiology 144: 885-893.
Shida T., Sekiguchi J. 2005. Cell wall degradation and modification hydrolases in Bacillus subtilis. Research signpost, survival and death in bacteria 117-142, ISBN: 81-7736-236-4.
Smith T.J., Blackman S.A. and Foster S.J. 2000. Autolysin of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology 146: 249-262.
Sudiarta I P., Fukushima T., and Sekiguchi J. 2010a. Bacillus subtilis CwlQ (previous YjbJ) is a bifunctional enzyme exhibiting muramidase and soluble-lytic transglycosylase activities. Biochemical and Biophysical Research Communications 398: 606–612.
Sudiarta I P., Fukushima T., and Sekiguchi J. 2010b. Bacillus subtilis CwlP of the SP-beta prophage has two novel peptidoglycan hydrolase domains, muramidase and cross-linkage digesting D,D-Endopeptidase. The Journal of Biological Chemistry. 285, ( 53): 41232–41243.
Susila, W., Sumiartha K., Okajima S., and Sudiarta P. 2005. Biological aspects studies and mass production method of the ectoparasitoid Hemiptarsenus varicornis (Girault) (Hymenoptera: Eulopidae) on Leaf Miner Play, Liriomyza sativae Blanchard (Diptera: Agromizidae). Paper Presented at the ISSAAS International Congress 2005, Hanoi Vietnam.
Sumiartha K., Susila W. and Sudiarta P. 2006. Biological study of egg rice yello stemborrer parasitoid (Tetrastichus schoenobii) (Hymenoptera: eulopidae) in the laboratory. Journal of ISSAAS 12(2): 74-75.
Supartha, I W., Bagus I G.N., and Sudiarta I P. 2005. Biodiversity of the population of Liriomyza spp. (Diptera: Agromyzidae) and Parasitoids in vegetables crop in high land area. Agritrop 24 (2): 43-51.
Downloads
Published
Versions
- 2020-07-22 (3)
- 2020-07-20 (2)
- 2011-06-01 (1)