WORKING MEMORY DALAM PEMBELAJARAN MATEMATIKA: SEBUAH KAJIAN TEORI

Authors

  • Vera Dewi Susanti Universitas Negeri Semarang, Indonesia
  • Dwijanto Dwijanto Universitas Negeri Semarang, Indonesia
  • Scolastika Mariani Universitas Negeri Semarang, Indonesia

DOI:

https://doi.org/10.37478/jpm.v3i1.1405

Abstract

 

The purpose of this study is to describe how short-term memory is in learning mathematics. This research method is a literature study. Literature study examines theories based on books, articles, notes, and reports related to the problems studied. The sources of data needed by researchers in this literature review are using primary sources and secondary sources. Data analysis aims to obtain answers from the formulation of the problem that has been determined, data analysis is carried out in an inductive and interpretive way. The result of this research is that the source of working memory during learning is explained in single-digit arithmetic learning, multi-digit arithmetic learning. Meanwhile, working memory in children with math difficulties is found in verbal working memory and visual-spatial working memory.

Downloads

Download data is not yet available.

Keywords:

Working Memory, Mathematics

References

Andersson, U., & Lyxell, B. (2007). Working memory deficit in children with mathematical difficulties: A general or specific deficit?. Journal of experimental child psychology, 96(3), 197-228. https://doi.org/10.1016/j.jecp.2006.10.001

Ashcraft, M. H., Donley, R. D., Halas, M. A., & Vakali, M. (1992). Working memory, automaticity, and problem difficulty. In Advances in psychology (Vol. 91, pp. 301-329). North-Holland.https://doi.org/10.1016/S0166-4115(08)60890-0

Atkinson, R.C., and Shiffrin, R.M. (1968). Human memory: A proposed system and its control processes. In K.W. Spence and J.T. Spence (Eds.), The Psychology of Learning and Motivation: Advances in Research and Theory. (Vol. 2, pp. 89–195). New York: Academic Press. 2. https://doi.org/10.1016/S0079-7421(08)60422-3

Baddeley, A. (2010). Working memory. Current biology, 20(4), R136-R140. https://doi.org/10.1016/j.cub.2009.12.014

Baddeley, A. D. (1990). Human memory: Theory and practice US: Allyn & Bacon. Google Scholar

Baddeley, A. (1996). Exploring the Central Executive. The Quarterly Journal of Experimental Psychology Section A, 49(1), 5-28. Google Scholar

Baddeley, A.D., and Hitch, G.J. (1974). Working memory. In G.A. Bower (Ed.), Recent Advances in Learning and Motivation (Vol. 8, pp. 47–89). New York: Academic Press. Google Scholar

Baker, S. C., Frith, C. D., Frackowiak, S. J., & Dolan, R. J. (1996). Active representation of shape and spatial location in man. Cerebral Cortex, 6(4), 612-619. https://doi.org/10.1093/cercor/6.4.612

Brown, J. (2004). Memory: Biological basis. In R. L. Gregory (Ed.), The Oxford companion to the mind (2nd ed., pp. 564–568). New York: Oxford University Press. Google Scholar.

Butterworth, B., & Reigosa, V. (2007). Information processing deficits in dyscalculia. In D. B. Berch & M. M. M. Mazzocco (Eds.), Why is math so hard for some children? The nature and origins of mathematical learning difficulties and disabilities (pp. 65–81). Paul H. Brookes Publishing Co. Google Scholar.

Cornoldi, C., Rigoni, F., Venneri, A., & Vecchi, T. (2000). Passive and Active Processes in Visuo-Spatial Memory: Double Dissociation in Developmental Learning Disabilities. Brain and cognition, 43(1-3), 117-120. Google Scholar

Cowan, N. (2005). Working memory capacity. New York: Psychology Press. Google Scholar

D'Amico, A., & Guarnera, M. (2005). Exploring working memory in children with low arithmetical achievement. Learning and Individual Differences, 15(3), 189-202. https://doi.org/10.1016/j.lindif.2005.01.002

De Rammelaere, S., Stuyven, E., & Vandierendonck, A. (1999). The contribution of working memory resources in the verification of simple mental arithmetic sums. Psychological Research, 62(1), 72-77. https://doi.org/10.1007/s004260050041

De Rammelaere, S., Stuyven, E., & Vandierendonck, A. (2001). Verifying simple arithmetic sums and products: Are the phonological loop and the central executive involved?. Memory & Cognition, 29(2), 267-273. https://doi.org/10.3758/BF03194920

DeStefano, D., & LeFevre, J. A. (2004). The role of working memory in mental arithmetic. European Journal of Cognitive Psychology, 16(3), 353-386. https://doi.org/10.1080/09541440244000328

Fletcher, J. M., Lyon, G. R., Fuchs, L. S., & Barnes, M. A. (2007). Learning disabilities: From identification to intervention New York: The Guilford Press. Google Scholar

Fuchs, L. S., Fuchs, D., Stuebing, K., Fletcher, J. M., Hamlett, C. L., & Lambert, W. (2008). Problem solving and computational skill: Are they shared or distinct aspects of mathematical cognition?. Journal of educational psychology, 100(1), 30. https://doi.org/10.1037/0022-0663.100.1.30

Gathercole, S. E., & Baddeley, A. D. (2014). Working memory and language. Psychology Press. Google Scholar

Geary, D. C., Hamson, C. O., & Hoard, M. K. (2000). Numerical and arithmetical cognition: A longitudinal study of process and concept deficits in children with learning disability. Journal of experimental child psychology, 77(3), 236-263. https://doi.org/10.1006/jecp.2000.2561

Geary, D. C., Hoard, M. K., & Hamson, C. O. (1999). Numerical and arithmetical cognition: Patterns of functions and deficits in children at risk for a mathematical disability. Journal of experimental child psychology, 74(3), 213-239. https://doi.org/10.1006/jecp.1999.2515

Geary, D. C., Hoard, M. K., Byrd-Craven, J., & DeSoto, M. C. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. Journal of experimental child psychology, 88(2), 121-151. https://doi.org/10.1016/j.jecp.2004.03.002

Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive Mechanisms Underlying Achievement Deficits in Children with Mathematical Learning Disability. Child Development, 1343-1359. https://doi.org/10.1111/j.1467-8624.2007.01069.x

Geary, D. C., Hoard, M. K., Nugent, L., & Byrd-Craven, J. (2007). Strategy use, long-term memory, and working memory capacity. In D. B. Berch & M. M. M. Mazzocco (Eds.), Why is math so hard for some children? The nature and origins of mathematical learning difficulties and disabilities (pp. 83–105). Paul H. Brookes Publishing Co. Google Scholar

Geary, D. C., Hoard, M. K., Nugent, L., & Byrd-Craven, J. (2008). Development of number line representations in children with mathematical learning disability. Developmental neuropsychology, 33(3), 277-299. Google Scholar

Goldberg, E. (2001). The executive brain: Frontal lobes and the civilized mind. New York: Oxford University Press. Google Scholar

Hecht, S. A. (2002). Counting on working memory in simple arithmetic when counting is used for problem solving. Memory & cognition, 30(3), 447-455. Google Scholar

Hitch, G. J., & McAuley, E. (1991). Working memory in children with specific arithmetical learning difficulties. British journal of psychology, 82(3), 375-386. Google Scholar

Hulme, C., Suprenant, A. M., Bireta, T. J., Stuart, G., & Neath, I. (2004). Abolishing the word-length effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(1), 98. Google Scholar

Hulme, C., Neath, I., Stuart, G., Shostak, L., Surprenant, A. M., & Brown, G. D. (2006). The distinctiveness of the word-length effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(3), 586. Google Scholar

Imbo, I., & Vandierendonck, A. (2007). The development of strategy use in elementary school children: Working memory and individual differences. Journal of experimental child psychology, 96(4), 284-309. https://doi.org/10.1016/j.jecp.2006.09.001

Imbo, I., Vandierendonck, A., & Vergauwe, E. (2008). The role of working memory in carrying and borrowing. Psychological Research, 71(4), 467-483. https://doi.org/10.1007/s00426-006-0044-8

Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9-year-old students. Cognition, 93(2), 99-125. https://doi.org/10.1016/j.cognition.2003.11.004

Lee, K. M., & Kang, S. Y. (2002). Arithmetic operation and working memory: Differential suppression in dual tasks. Cognition, 83(3), B63-B68. https://doi.org/10.1016/S0010-0277(02)00010-0

LeFevre, J.-A., DeStefano, D., Coleman, B., & Shanahan, T. (2005). Mathematical cognition and working memory. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 361–377). Psychology Press. Google Scholar

LeFevre, J. A., Lei, Q., Smith-Chant, B. L., & Mullins, D. B. (2001). Multiplication by eye and by ear for Chinese-speaking and English-speaking adults. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 55(4), 277-284. Google Scholar

Lemaire, P., Abdi, H., & Fayol, M. (1996). The role of working memory resources in simple cognitive arithmetic. European Journal of Cognitive Psychology. https://doi.org/10.1080/095414496383211

Mabbott, D. J., & Bisanz, J. (2008). Computational skills, working memory, and conceptual knowledge in older children with mathematics learning disabilities. Journal of Learning Disabilities, 41(1), 15-28. https://doi.org/10.1177/0022219407311003

Miller, R. (1956). The Magic Number of Seven Plus or Minus Two: Some Limits on Our Capacity for Processing Information. Psychological Review, 63, 81-97. Google Scholar

Miyake, A., & Shah, P. (1999). Toward unified theories of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 442–481). New York: Cambridge University Press. Google Scholar

Noël, M. P., Désert, M., Aubrun, A., & Seron, X. (2001). Involvement of short-term memory in complex mental calculation. Memory & cognition, 29(1), 34-42. https://doi.org/10.3758/BF03195738

Pass, F., Renkl, A., & Sweller, J. (2004). Cognitive Load Theory: Instructional Implications of the Interaction between Information Structures and Cognitive Architecture. Instructional Science, 32(1-2), 1-8. Google Scholar

Passolunghi, M. C., & Cornoldi, C. (2008). Working memory failures in children with arithmetical difficulties. Child Neuropsychology, 14(5), 387-400. https://doi.org/10.1080/09297040701566662

Passolunghi, M. C., & Siegel, L. S. (2001). Short-term memory, working memory, and inhibitory control in children with difficulties in arithmetic problem solving. Journal of experimental child psychology, 80(1), 44-57. https://doi.org/10.1006/jecp.2000.2626

Passolunghi, M. C., & Siegel, L. S. (2004). Working memory and access to numerical information in children with disability in mathematics. Journal of experimental child psychology, 88(4), 348-367. https://doi.org/10.1016/j.jecp.2004.04.002

Retnowati, E. (2008). Keterbatasan memori dan implikasinya dalam mendesain metode pembelajaran matematika. In Prosiding Seminar Nasional Matematika dan Pendidikan Matematika (pp. 978-979). Google Scholar

Rosselli, M., Matute, E., Pinto, N., & Ardila, A. (2006). Memory abilities in children with subtypes of dyscalculia. Developmental neuropsychology, 30(3), 801-818. https://doi.org/10.1207/s15326942dn3003_3

Seitz, K., & Schumann-Hengsteler, R. (2000). Mental multiplication and working memory. European Journal of Cognitive Psychology, 12(4), 552-570. https://doi.org/10.1080/095414400750050231

Seitz, K., & Schumann-Hengsteler, R. (2002). Phonological loop and central executive processes in mental addition and multiplication. Psychological Test and Assessment Modeling, 44(2), 275. Google Scholar

Seyler, D. J., Kirk, E. P., & Ashcraft, M. H. (2003). Elementary subtraction. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(6), 1339. Google Scholar

Sukmadinata, N.S. 2009. Metode Penelitian Pendidikan. Bandung: Remaja Rosdakarya.Google Scholar

Swanson, H. L., & Beebe-Frankenberger, M. (2004). The relationship between working memory and mathematical problem solving in children at risk and not at risk for serious math difficulties. Journal of educational psychology, 96(3), 471. Google Scholar

Swanson, H. L., & Jerman, O. (2006). Math disabilities: A selective meta-analysis of the literature. Review of educational Research, 76(2), 249-274. https://doi.org/10.3102/00346543076002249

Sweller, J. (2004). Instructional Design Consequences of an Analogy between Evolution by Natural Selection and Human Cognitive Architecture. Instructional Science, 32(1-2), 9-31. https://doi.org/10.1023/B:TRUC.0000021808.72598.4d

Tolan, G. A., & Tehan, G. (2005). Is spoken duration a sufficient explanation of the word length effect? Memory, 13, 372–379. https://doi.org/10.1080/09658210344000305

Van Der Sluis, S., Van Der Leij, A., & De Jong, P. F. (2005). Working memory in Dutch children with reading-and arithmetic-related LD. Journal of Learning Disabilities, 38(3), 207-221. https://doi.org/10.1177/00222194050380030301

Wu, S. S., Meyer, M. L., Maeda, U., Salimpoor, V., Tomiyama, S., Geary, D. C., & Menon, V. (2008). Standardized assessment of strategy use and working memory in early mental arithmetic performance. Developmental neuropsychology, 33(3), 365-393. https://doi.org/10.1080/87565640801982445

Downloads

Published

2021-12-20

How to Cite

Susanti, V. D. ., Dwijanto, D., & Mariani, S. (2021). WORKING MEMORY DALAM PEMBELAJARAN MATEMATIKA: SEBUAH KAJIAN TEORI. Prima Magistra: Jurnal Ilmiah Kependidikan, 3(1), 62-70. https://doi.org/10.37478/jpm.v3i1.1405